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Problem Statement.

* How to assess and design Unmanned Aircraft
System (UAS) integration into the National Airspace
System (NAS)?

— Safety and (cyber) security are critical to system
— What is the design space for safety and security?

— What is the Human-Automation ontology necessary for
safe and secure flight operations?
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0 Introduction & b i

Motivation. Real world.

* Today, laborious accommodation of unmanned aerial systems
(UAS) within the National Airspace System (NAS), or use in

isolated military operations DoD UAS Flight Hours
— 545 UAS Certificate of Authorizations, Dec 13 [1] (By Depagrygg&bgggzscal Year)
— Exponential UAS use in DoD past decade -> i50000
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* Recent Projections [2]
— Teal Group (2013). Research & Development /
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Procurement $5.2-$11.6B annually next decade

* Future, seamless UAS integration into

| @AIRFORCE ®wARMY wMAVY &USMC = PROJECTED |

Does notinclude Group 1 UAS

manned operations. Fig. 1. DoD UAS Flight Hour Summary.

* FAA on UAS-NAS integration [4] Flg. 1 adapted from 3]

— “Ultimately, UAS must be integrated into the NAS without reducing existing
capacity, decreasing safety, negatively impacting current operators, or

increasing the risk to airspace users or persons and property on the ground...” .
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Motivation. Intellectual.
e Systems Theory applied to Systems Engineering (SE)

— UAS Integration is a Complex Sociotechnical System

— Safety and Security are emergent properties; framed and analyzed as a
control problem. Leveson and Young [6]

e Application of SE to UAS Systems Engineering
integration < PR o
— STAMP-STPA, and Safety and %
Security Driven Design

* lterative relationship. Assess
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— Most benefit in conceptual design Anayis | i
* Architecture

+ Implementation

Design

and requirements generation
Technical Management Processes

— Aids in comprehension of system Fig. 2. Systems Engineering.
. Fig. 2 adapted from Defense Acquisition Guidebook, Chpt 4 [7]
complexity
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Hypothesis:

* A systems-theoretic process analysis can be applied to the
design and evaluation of safe and cyber-secure integrated
manned-unmanned aerial system operations.

* A coupled safety and cybersecurity SE assessment will
demonstrate system design and evaluation benefits over
independent analyses.

* UAS automation ontology for safe and secure integrated
operations can be derived from SE analyses.

Method.

e Systems engineering approach

* Adaptation of Systems Theoretic Accident Model and
Processes for system hazard and vulnerability analyses.
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UAS-NAS Integration. Challenging Problem

* International efforts * Current efforts.
— Beganin the 1990s — Radio Technical
— International Civil Aviation Organization Committee for
e US efforts Aeronautics
— Vision 100 — Century of Aviation — RTCA Steering Committee-

Reauthorization Act (NextGen), 2003

e Congress mandated FAA to
accommodate UAS operations.

— 2012, FAA Modernization & Reform Act

* Small UAS rule by Sep 2014

« UAS integration into the NAS, Sep 2015 * Communications and
Control (C2)
* European Efforts
P » Safety Assessment key

— European Organization for Civil Aviation effort for the NAS-level
Equipment (EUROCAE) change

228 to develop performance
standards for key UAS
technologies

* Detect and Avoid (DAA)
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* Current safety assessment efforts sjo

— Goal. Integration does not decrease safety
— Accident of interest. Mid-air collisions (MAC)

— System safety metric.
» Target level of safety, collision rate (A). e.g. 1x10° MAC/hr

— Detect and Avoid safety metric. Risk ratio of A.
* Anitigated / Munmitigatea» Mitigated = A w/ Detect & Avoid System

* Many efforts-human factors studies, model and simulation
(M&S), etc.-feed these quantitative safety assessments

— Traditional methods used, such as Bow-Tie model, fault and
event trees.

10
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e Current safety

barrier paradigm

— Air traffic control
perspective

— US airspace does
not completely
match (dotted
oval)

UAS-NAS
Integration
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e System of interest.

— Manngd—Unmanned integrated flight eI et
operations
— High level system safety control |
structure Law, Budget  Raparts,
oo
— System goal. Safe and secure e
integration Department of Transportation
d Objectives. Federal Aviation Administration
— No new hazards from introduction of |
UAS remote operations Vision, T
* Accidents of interest. Directives  safety Data

— Mid-air collision |
. . Alrspace & Flight Operations Management.
— Ground collision (nOt d fOCUS) Air Traffic Organization (ATO),

Aviation Safety (AVS)

I
INTEGRATION SYSTEM HAZARD Airspace Vol +
- - \ oice, State Data,
Hi System control actions lead to loss of aircraft C”T” ASRP
minimum separation standards I

Airspace Integration

System control actions induce or contribute to
a controlled flight into terrain maneuver Manned Alrcraft | | Unmanned Alrcraft
System control actions induce or contribute to
loss of aircraft controlled flight

H2
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Fig 4. UAS Integration Safety Control Structure
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* Major assumptions
— Manufacturing, certification, airworthiness, maintenance, training are nominal
— No airspace changes, working with current US airspace designations
— Communications spectrum available to support UAS

e Concept of operations (CONOPS)
— File and fly under Instrument flight rules
— ATC does not have direct link to the UA for flight control
— Fully autonomous operations not permitted
— Separation services will be provided to UAS
— Two separation thresholds. Self Separation (SST) and Collision Avoidance (CAT)
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Figure 5. Self-Separation Functional Boundaries and System Thresholds, SST to WCV

Fig. 5. Adapted from [10, p. 3-21] 14
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Scope.

* Analysis and design of flight operations only
* Techno-human changes, challenges introduced to the NAS

— Air traffic management

* May not have control when UAS is operating autonomously (lost link) or
under malevolent control (hacking)

— UAS operator & remote UAS operations

e Operator needs a way to see and avoid -> Detect and Avoid (DAA)

* Operator needs a way to communicate and control (C2) -> C2 Data Link
— Human Factors

* Loss of visual, auditory, motion (angular & linear accelerations)
* Motivation for self-preservation

15
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* We can successfully apply STAMP-STPA to the
UAS-NAS integration system.

— STPA derived high level constraints, requirements for
integration system and associated control agents

— UAS operator and DAA STPA Step 2 control loop
models developed

* Effort to assist standards making committees in
framing, designing, and assessing system safety

* Next research phase.

— Defining UAS human-automation ontology from STPA

— Develop process and method for analytical design
space characterization of safety and security
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